The [13]G.Bello,H.Menendez,andD.Camacho,”Usingthec lusteringcoefficient to guide a genetic-based communities

The authors wish to thank the Management and
Principal of Mepco Schlenk Engineering College, for
their support in carrying out this research work.
REFERENCES
1 U. Gargi et al., “Large-scale community detection
on YouTube for topic discovery and exploration,”
in Proc. Int. Conf. Weblogs Social Media, 2011, pp.
486–489.
2 M. Cheung, J. She, and Z. Jie, “Connection
discovery using big data of user shared images in
social media,” IEEE Trans. Multimedia, vol. 17, no. 9
pp. 14171428, Sep. 2015.
3 S. Huang, J. Zhang, L. Wang, and X.-S. Hua,
“Social friend recommen- dation based on multiple
network correlation,” IEEE Trans. Multimedia, vol.
18, no. 2, pp. 287–299, Feb. 2016.
4 S. Huang, J. Zhang, L. Wang, and X.-S. Hua,
“Social friend recommen- dation based on multiple
network correlation,” IEEE Trans. Multimedia, vol.
18, no. 2, pp. 287–299, Feb. 2016.
5 S. Fortunato, “Community detection in graphs,”
Phys. Rep., vol. 486, pp. 75–174, 2010.
6 M. Planti and M. Crampes, “Survey on social
community detection,” in Social Media Retrieval.
London. U.K.: Springer, 2013, pp. 65–85.
7 F.L.Huang,S.C.Zhang,andX.F.Zhu,”Discoveri
ngn etworkcommunity based onmultiobjective
optimization,” Ruan Jian Xue Bao/J.
Softw., vol. 24, no. 9, pp. 2062–2077, 2013.
8 C. Pizzuti, “GA-NET: A genetic algorithm for
community detec- tion in social networks,” Parallel
Problem Solving Nature, vol. 5199, pp. 1081–1090,
2008.
9 X. D. Duan, C. R. Wang, X. D. Liu, and Y. P.
Lin,”Webcommunitydetectionmodelusingparticleswa
rmoptimization,”inProc.Congr.Evol. Comput., 2008,
pp. 1074–1079.
10J.Xie,S.Kelley,andB.K.Szymanski,”Overlappingc
ommunitydetection in networks: The state-of-the-art
and comparative study,” ACM Comput. Surv., vol.
45, no. 4, 2013, Art. no. 43.
11A.AmelioandC.Pizzuti,”Overlappingcommunityd
iscoverymethods:A survey,” in Social
Networks:Analysis and Case Studies. Vienna, Austria:
Springer, 2014, pp. 105–125.
12M.LipczakandE.Milios,”Agglomerativegenetical
gorithmforclusteringinsocialnetworks,”inProc.Geneti
cEvol.Comput.,2009,pp.1243–1250.
13G.Bello,H.Menendez,andD.Camacho,”Usingthec
lusteringcoefficient to guide a genetic-based
communities finding algorithm,” in Proc. Intell. Data
Eng. Automated Learn., 2011, pp. 160–169.
14 M. Gong et al., “A non-dominated neighbor
immune algorithm for com- munity detection in
networks,” in Proc. Conf. Genetic Evol.Comput.,
2011, pp. 1627–1634.
15 C. Pizzuti, “Boosting the detection of modular
community structure with genetic algorithms and
local search,” in Proc. Symp. Appl. Comput. 2012,
pp. 226–231.
16 R. Shang et al., “Community detection based on
modularityanimprovedgeneticalgorithm,”PhysicaA,St
atist.Mech.A ppl.,vol.392,no.5, pp. 1215–1231, 2013.
17 J. Li and Y. Song, “Community detection in
complex networks us- ing extended compact
geneticalgorithm,” Soft Comput., vol. 17, no. 6, pp.
925–937, 2013
.
18 A.A.A.Esmin,R.A.Coelho,andS.Matwin,”Arevie
wonparticleswarm optimization algorithm and its
variants to clustering high-dimensional data,” Artif.
Intell. Rev., vol. 44, no. 1, pp. 23–45, 2013.
19M.BroiloandF.G.B.DeNatale,”Astochasticapproa
chtoimageretrieval using relevance feedback and
particle swarm optimization,” IEEE Trans.
Multimedia, vol. 12, no. 4, pp. 267–277, Jun. 2010.
20 H.H.Chou, L.Y. HsuandH.T.Hu,”TurbulentPSO-based
fuzzy image filter with no-reference
measures for high-density impulse noise,” IEEE Trans.
Cybern., vol. 43, no. 1, pp. 296–307, Feb. 2013.
21 J. Kennedy and R. C. Eberhart, “A discrete
binary version of the particle swarm algorithm,” in
Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 1997,
vol. 5, pp. 4104–4108.
22 T. Mei et al., “ImageSense: Towards contextual
image advertising,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 8, no. 1, pp. 159–170, 2012.
23 M. Wang et al., “Assistive tagging: A survey of
multimedia tagging with human-computer joint
exploration,” ACM Comput. Surv., vol. 44, no. 4,
2012, Art. no. 25.
24 A. Sureka et al., “Mining YouTube to discover
extremist videos, users and hidden communities,” in
Proc. Asia Inf. Retrieval Symp., 2010, pp. 13–24.
25 Z. Wang, D. Zhang, and X. Zhou, “Discovering
and profiling overlapping communities in locationbased
social networks,” IEEE Trans. Syst. Man,
Cybern., Syst., vol. 44, no. 4, pp. 499–509, Apr. 2014.
26 R. L. Santos et al., “Characterizing the YouTube
video-sharing com- munity,” Federal Univ. Minas
Gerais (UFMG), Belo Horizonte, Brazil,
2007.Online.Available:
http://homepages.dcc.ufmg.br/˜rodrygo/wpcontent/pap
ercite-data/pdf/santos2007vol.466,pp.761764, 2010.
27C.M.A.Yeung,N.Gibbins,andN.Shalt”Contextangta
gsincol- laborative tagging systems,” in Proc. ACM
Conf. Hypertext Hypermedia, 2009, pp. 251–260.
28 D. Tsatsou et al., “Distributed technologies for
personalized advertise- ment delivery,” in Online
Multimedia Advertising: Techniques and Technologies,
X. C. S. Hua, T. Mei, and A. Hanjalic, Eds.
Hershey, PA, USA: IGI Global, 2010, pp. 233–261.
29Y.L.Zhaoetal.,”Detectingprofilableandoverlappin
gcommunitieswith user-generated multimedia
contents in LBSNs,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 10, no. 1, 2013, Art.
30J.Xie,S.Kelley,andB.K.Szymanski,”Overlappingc
ommunitydetection in networks: The state-of-the-art
and comparative study,” ACM Comput. Surv., vol.
45, no. 4, 2013, Art. no. 43.